国际油价趋势走向分析最新_国际油价趋势走向分析
国际形势稳定时。
当国内的汽油价格已飙升到十块钱每升,国际油价也在悄咪咪的上涨中,每桶150美元的高价创下新高。这不仅影响着众多行业的发展,还使得部分行业生产产品的制作成本加大。
以目前的情况来看,国际原油价格持续上涨的过程中,最容易实现销量突破的行业为新能源汽车。新能源汽车最大的优势是不使用燃油,却需要智障的电能。反观多家新能源汽车制造公司,纷纷推出性价比高的产品,从而抢占燃油汽车市场。可是已经购买燃油汽车的消费者更关心油价下跌,然而,暂时油价下跌的概率较小。
国际形势稳定或国际原油贸易稳定时,或许原油价格趋于稳定或下跌虽然部分原油贸易大国依然保持着稳定的原油产量,但是国际形势变得相当不稳定,欧盟多个国家宣布禁止进口俄罗斯石油。这显然导致石油价格与石油市场发生很大的变动,原油价格持续上升,考验的是多个国家的应对能力。
此外,国际原油贸易变得非常稳定时,多个国家以有好的状态完成石油贸易,石油价格才会出现稳定下跌的可能性。只不过原油价格下跌是一个循序渐进的过程,就像原油价格上涨分为多个阶段。良好的国际贸易环境造就稳定发展的贸易状态,从而导致多个国家在大宗商品贸易和普通商品贸易方面进行深入合作,价格相对稳定。
燃油汽车使用大量的燃油或柴油,价格上升之后,便会对部分家庭造成实质性的影响。反观欧洲多个国家,居民无法享受充足石油,价格越来越高,燃油汽车成为摆设。尽管官方可以寻找新的合作方,但是居民已经受影响。
传统的数据仓库展现,一般是通过建立数据仓库、设定维度、预先计算,然后向客户端展现多维分析的结果。在本系统中,则取了与之不同的另一种数据仓库构建的思路,即在系统的数据仓库展现中尝试利用多维数据表之间的关联性来实现实时的多维分析功能。
在多维数据结构中,事实表和维度表之间是通过直接或间接的关系联系在一起的。对于某张表中某条记录的选取,可以在其他相关联表之间查询到与之相关联的数据记录,并可以对选取的数据和相关联的数据进行统计分析,得到这些数据的分布、趋势等分析结果,并且可以在设定了多维分析的维度之后,按照维度之间的层次关系对数据从各个不同的组合角度进行分析,形成实时的多维分析。
数据仓库展现的开发内容一般可以分为数据仓库的设计和多维分析的实现两部分。数据仓库的设计包括星型模式的搭建、数据抽取方式的确定、数据转换净化的实现,以及多维数据的存储等内容。多维分析的实现则包括多维分析维度的选取、度量值的定义、维度变换方式、钻取路径的定义、钻取数据显示方式的确定等内容。
本系统在开发过程中,由于原型系统带来的需求不确定性和数据齐备性等因素的制约,如何设计出良好的结构来更好地进行多维数据展现以及取何种形式进行展现是一个重点问题。前文已经讨论过系统中数据仓库的架构模式、多维数据结构的定义等内容,讨论了系统原始数据源中存在的复杂性、数据完整性和数据有效性等方面存在的问题及解决办法。多维分析的设计包括维度之间的关联、事实数据展现的内容和形式、数据钻取等内容。
5.3.2.1 维度表关联性分析
数据源表结构中包括一张事实表和数张维度表。针对这些维度表可以设计用于多维分析的维度,分别为油品、交易市场、交易类型、价格单位和价格日期维度。维度数据和中间事实表之间存在直接关联,维度数据之间通过中间事实表而产生简洁的关联关系。从而可以在既有事实数据的基础上,对维度之间的关联关系进行可视化展现。
图5.29中显示了4个维度的内容数据,并列出了各维度中所具有的字段取值,这些字段通过事实表产生关联。在选择了Crude Oil油品之后,其他3个维度中的字段取值背景出现变化。白色背景表示在事实表中存在与Crude Oil相关联的交易市场,分别为Cushing,OK和Europe Brent,这表明事实表中存在有Crude Oil在这两个市场中的价格数据,没有在其他市场上的价格数据。
图5.29 多维分析维度列表
在默认情况下,维度列表显示了全部可能的维度取值。而在选择了某一维度之后,比如选择产品名称中的Crude Oil值,则在其他维度中高亮显示与此维度选中值通过油价数据关联起来的维度值。通过维度之间的关联显示,可以分析出源数据中隐藏的一些分布模式。在本示例中就可以看出系统中具有Crude Oil在Cushing,OK和Europe Brent两个市场的Spot Price FOB价格,而价格时间则从1986年到2008年都存在,油价的单位名称只存在Dollar per Barrel一种形式。多维分析的维度关联性分析,还允许在一次分析基础之上继续缩小选择值的范围。
5.3.2.2 维度表和事实表的关联性分析及展现
在实时多维分析中,除了可以进行维度表之间的关联性分析,也可将维度表和事实表关联起来进行分析。在此类分析中,除了可以在界面左侧展示维度表之间的关联之外,还可以在界面主体部分显示出事实表数据以及以事实表数据为基础的一些统计分析。图5.30中展现的是全球石油价格不同交易类型的对析,反映出对各石油品种在现货交易、期货交易等方式下的价格对比情况,分析的结果可以随左侧维度选择的变化实时变动。
图5.30 交易价格比较分析
对于事实表的展现,除了按照默认的维度顺序进行统计分析,维度之间的顺序也可以直接通过在界面中拖动维度的位置来完成维度的变换,实现多维分析旋转功能,在此不再赘述。
5.3.2.3 事实表数据钻取
多维分析另外一个很重要的内容就是数据钻取。在实时多维分析中,数据钻取的功能可以更为丰富。出于分析的目的,我们预先定义了钻取路径:
市场→价格类型→价格年份→产品名称。
这样就可以按照这样的路径对油价进行钻取分析。第一次默认按照市场名称来统计历史油价,在选择了一个市场之后就向下钻取两层,就可以得到按照价格年份来统计的历史油价。这里的钻取分析可以和维度关联性分析结合起来使用,从而更灵活地实现数据钻取(图5.31,图5.32)。
图5.31 数据钻取分析一
图5.32 数据钻取分析二
5.3.2.4 价格趋势分析
价格趋势分析可以作为价格预测的一种补充,它的功能展现过去时间的不同油品、不同交易类型及价格单位等相关信息,以此来直观表达油品的未来走向与趋势。这一块已经有了单独的模型程序模块来完成(图5.33)。
图5.33 多维价格趋势分析
通过在数据仓库展现中利用实时多维分析中的维度表关联性以及维度表和事实表之间的关联性,可以更好地拓展多维分析的功能。而对多维分析的需求确定可以考虑取原型法来进行,利用数据仓库的实时多维展现来发现数据的内涵和数据之间的关联性,逐步帮助确定需要分析的维度、度量值、展现方式等内容,并反向影响到数据源表结构的设计。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。